
INTRODUCTION TO IMAGE PROCESSING

Mainly through the use of computers, television and digital photography we are surrounded with digital images. Unlike traditional film cameras, when we take a picture with a digital camera we are able to easily manipulate the image by altering its appearance electronically if we so desire. Think about the Photo Booth application on your Macbook. What are you able to do to your picture? Can you think of a few other examples of where image processing is used?
If we treat the image you captured on Photo Booth as an input signal and the resulting image as the output then image processing is the theory behind altering the image. Figure 1 below shows a simple block diagram of image processing. How would you describe the image processor based on the input and output images below?

[image: image12.wmf]
Figure 1: Image processing on an image captured with a digital camera
In this lab we will learn about some of the theory and techniques that go on inside of the image processing block. To do this we will have to draw on our understanding of both physics and mathematics.
What is a digital image?

A digital image is defined as a two-dimensional representation (width and height) of some subject, usually a physical object or a person. The image is composed of many small dots known as picture elements or pixels. Because the dots are so small our brain is able to assemble to dots into a meaningful image. However, if we were to enlarge the picture we would eventually see each pixel and would lose focus of the overall image. The number of pixels being used to represent an image determines the amount of detail in the image. This is known as resolution. Think about your color printer. What happens when you change the print quality from poor to best?
How are pixels used to represent the image?
Digital images can be represented in various formats such as black & white, grayscale or color. Each pixel of an image is assigned a number that represents its color or intensity. For instance, in a black & white image a pixel that is black would be assigned a zero and a pixel that is white would be assigned a one. The entire image would therefore be represented by a grid (array) of zeros and ones. This is equivalent to saying that we have a one bit image. Each pixel is described by one binary digit. Figure 2 below is an example of a binary image.
[image: image2.wmf]

Figure 2: binary image

What happens if we allow different shades of black? If we permit intensities to fall between the range of black & white we need to increase the number of bits that are used to represent the intensity of a pixel. Instead of using only one bit we may now use 8 bits to define the intensity of a pixel. An 8-bit sequence ('11001001') can take on 256 different values. Therefore each pixel can take on 256 intensities if represented by an 8-bit sequence. What color would 0 refer to? What about 255? What about 100?

If we increase the depth of the image from 8-bits to 16-bits we now can represent each pixel by 65,536 different numbers. What can you conclude about the bit depth of an image? What would happen to the file size of the image by increasing the image depth? Figure 3 below shows an image allowing for 256 different intensities for each pixel. Why is each pixel represented by a decimal number?
[image: image3.wmf]
Figure 3: 8-bit image
Color
Since light makes color possible, a brief overview of light is needed in order to obtain a comprehensive understanding of color. The electromagnetic energy spectrum is comprised of energy waves also known as light. Our eyes are capable of detecting only a small portion of light which we call the visible spectrum. This spectrum is bounded by the colors we interpret as violet and red. At the higher end of the visible spectrum beyond violet is light of shorter wavelengths known as ultraviolet and x-rays. At the lower end of this spectrum beyond red is light of longer wavelengths known as infrared and radio.
[image: image1.emf]Image Processing

Block

Input Output

[image: image4.png]700 nm 400 nm

104 108 108 10 Il—“W“ 101 101 | 0
- frequency (Hz)

wavelength (nm)

1091012 1011 10° 107 105 10° 10' 101102

AM radio /microwave\ ultraviolet \ gamma rays
FM radio, TV infrared x-rays

Figure 4: The visible spectrum

As shown in figure 4 all colors visible to us exist in between red and violet. If the visible portion of the light spectrum were divided into thirds, the predominant colors would be red, blue and green (RGB). These colors are considered to be the modern primary colors.
White light which consists of all of the colors is passed through a prism to break it up into its individual colors. These colors shown on a piece of paper would form a circle known as the color wheel. The primary colors would form a large triangle. The colors in between the primary colors namely, cyan, magenta and yellow (CMY) would form another triangle. Combining two of the additive primary colors produces the secondary colors cyan, magenta, and yellow and a combination of all three produces white. Figure 5 illustrates the color wheel.

[image: image5.jpg]

Figure 5: The color wheel
Color digital images
The LCD monitor on your computer uses three tiny light sources for each pixel. Each light source is either red, blue or green and each can vary the intensity of light it produces. Therefore each pixel can represent any color from black to white by varying the intensity of these three light sources. How would you represent black? White? Cyan?
Previously we only required one array to represent the entire digital image because we were only working with the intensity of black. For color we need to vary the intensity of three colors for each pixel. Therefore we require three different arrays for each image.
Images are stored as an m-by-n-by-3 array, where m is the number of rows and n is the number of columns. Each third dimension represents the intensity of one of the primary colors for each individual pixel. Consider the 200th by 200th pixel of an image. This pixel has three different color intensities contributing to its resulting color.

[200 (Height), 200 (Width), 255 (Red)]

[200 (Height), 200 (Width), 255 (Green)]

[200 (Height), 200 (Width), 255 (Blue)]

Figure 6: An RGB image
Now that we understand and have built a foundation for the representation of digital images we are ready to begin learning the theory behind a few image processing techniques. Since we have digitized the image by representing it by a sequence of numbers were are able to manipulate it using mathematics on the sequence. Once we have completed our math to alter the 3-dimensional array we can send it to our LCD screen to verify that our image processing performed as expected.
You are now going to work in small groups on a series of activities to familiarize yourselves with the theory behind a few popular image processing techniques. You will then have the opportunity to manipulate images you capture in Photo Booth to experiment with these techniques. In particular we'll be focusing on:
 Tinting an Image

Edge Detection

Denoising an image
Tinting an image in Matlab
The Image Processing Toolbox in Matlab is a mathematical computational tool allowing you to perform a large variety image processing techniques on images. You may also develop your own techniques by implementing your own mathematical algorithms. We’ve developed an algorithm for tinting an image for you and have put it into a GUI for your ease of use.
Tinting an image involves switching off one or more of its color channels in order to produce a shade of the image. If we were to switch off the red channel, can you guess what kind of tint you would produce on the image? What about when you turn the green channel off? What kind of shade would you produce if you turned the blue channel off?

ACTIVITY 1 – Obtain your image with Photo Booth
1. Open up Photo Booth on your Macbook.

2. Take a picture of yourself

3. Save this picture to your desktop as mypicture.jpg

ACTIVITY 2 – Using Matlab to tint images
1. In the command prompt of Matlab type Tinting.

2. You will be prompted to enter 1, 2 or 3. 1 turns off the red channel, 2 turns off the green channel and 3 turns off the blue channel. Which channel would you turn off to produce a cyan tint? Why?

3. Which channel would you turn off to produce a yellow tint? Why?

4. Which channel would you turn off to produce a magenta tint? Why?

ACTIVITY 3 - Use the Digital Color Meter Application to view the RGB Channels
1. Open up the Digital Color Meter which is in Applications > Utilities folder.

2. From the drop down menu, select “RGB As Actual Value, 8-bit”.

3. Move the mouse over the color spectrum in the MATLAB GUI. Notice the Red, Green and Blue values as you change the color. What are these values? Why?

4. Move the mouse to a part of the screen that is black. Notice the Red, Green and Blue values. What are these values? Why?
Edge detection of an image
Sharp changes in pixel intensity could signify the presence of an object or the edge of an object. For instance two consecutive pixels where one that is close to black with a color intensity of 0 and one that is close to white with a color intensity of 235.

[image: image6.emf]
Figure7: The color intensities of two adjacent pixels at the edge of an object

The goal of edge detection is to highlight the edges of an object in an image. This is accomplished by accentuating sharp changes in color intensity like the one shown in figure 7. Edge detection of an image significantly reduces the amount of data and filters out information that may be regarded less relevant.
Edge detection can be accomplished in a variety of ways. The simplest way is to compare the difference in adjacent pixel values to a certain color intensity or threshold. We start at the upper left corner of an image and compute the difference in color intensities between every adjacent pixel. The difference is then compared to a certain threshold and if the difference is greater than the threshold we can conclude that an edge has been detected.

ACTIVITY 4 – Detecting sharp changes in intensities

1. On the activity sheet provided calculate the difference between the values of the first two adjacent boxes in every row. If the difference between the boxes exceeds the threshold, color the second of the two boxes black with a pencil. If not, leave the box white. The threshold for this activity is set to 20.
Note: Use the absolute value when calculating the difference.
2. Compute the difference in values between the second and third boxes. If the difference between these boxes exceeds the threshold color the third box black.
3. Repeat the above steps until you reach the end of the grid.

ACTIVITY 5 – Detecting the edges of an image in MATLAB

1. In the command prompt of Matlab type EdgeDetection and hit enter.
2. You will be prompted to enter a threshold for edge detection. This value must be between 0 and 255. Why?
3. Repeat this activity for high threshold values such as 100 and low threshold values such as 3.
What did your image look like? Were the edges clear? We can improve our edge detector by altering our algorithm. One way of enhancing our detector is to compare the average values of adjacent pixels instead of each individual pixel value.
We begin by taking the average values of the first set of two pixels (first and second pixel) and the second set of two pixels (third and fourth pixel). Then we compute the difference between these two average values and compare it to a threshold like we have done in our previous algorithm. If the difference is greater than the threshold the third pixel is colored black. Otherwise the third pixel is colored white. We repeat this procedure by moving one pixel to the right. Therefore we compare the averages values of pixels two and three with pixels four and five. The procedure is repeated until the last pixel has been reached.
ACTIVITY 6 – Detecting sharp changes in intensity using average values
1. On the activity sheet provided calculate the average value of the first two boxes and compare it to the average value of the next two boxes. If the difference between the average values exceeds the threshold color the third box black. If not, leave the box white. The threshold for this activity is set to 20.
2. Repeat. Compare the average value of the second and third boxes with the average of the fourth and fifth boxes. If the difference between the averages is greater than the threshold color the fourth box black.
3. Once you get to the end of one row move down one row and work your way left to right. Complete for the entire grid.
ACTIVITY 7 - Detecting the edges of an image in MATLAB using average values
1. In the command prompt of MATLAB type EdgeDetectionAV.
2. You will be prompted to enter the number of pixels to be considered for the average value (block size). If you enter 2 the algorithm will take the average value of every two pixels and compare it to the average value of the next two pixels. If you enter 3 the average value of every three pixels will be compared to the average value of the next three pixels and so on.
3. Next you will be prompted to enter a threshold. This value must be between 0 and 255.

4. Experiment with the algorithm on your image. Try various threshold values such as 10 and 150. Try a different number of block sizes such as 3 and 5.

Denoising an image
All electronic devices are subject to noise. This is partly due to the thermal noise that arises from the heating of electrons in the device. The image sensor in your digital camera is subject to both this thermal noise and noise generated when light hits the sensor. At times it may appear in your picture. Image noise can be characterized as the random fluctuation of pixel values in an image. It appears as random speckles on an otherwise smooth surface and may degrade the image quality. Figure 8 below shows an example of salt and pepper noise in an image. Figure 9 shows an example of Gaussian noise.
[image: image7.emf] [image: image8.emf]
Figure 8: Image w/ Salt and Pepper noise (left), Image after restoration (right)
[image: image9.emf] [image: image10.emf]
Figure 9: Image w/ Gaussian noise (left), Image after restoration (right)
Salt and pepper noise also known as grainy noise occurs in the form of pixels with random color intensities that appear to be scattered on an image (figure 8). Another type of noise prevalent in digital images is Gaussian noise also known as snowy noise. Gaussian noise produces an effect on the image similar to an old television set with poor reception. It is characterized by two parameters, mean and variance. The intensity of each pixel in the image will differ from its original value by some average value. The variance specifies how much the noise will vary from the average value. The result is a random fluctuation of the intensity of each pixel in the image.

In order to remove noise from an image we may employ two commonly used algorithms. The first method samples a block of pixels and calculates the mean value. It replaces the pixel in the center of the block with this mean value. The other algorithm works similarly, but instead calculates the median value instead of the mean.

ACTIVITY 8 – Denoising algorithms: Evaluating the mean and median
1. On the activity sheet provided calculate the mean of a 3-by-3 window of an image
2. Substitute the number in the center of the window with the calculated mean.

3. Move one pixel to the right and repeat. Repeat for the rest of the 3-by-3 blocks.

4. Repeat steps 1-3, but take the median instead of the mean.
Note: when calculating the mean/median use the original pixel intensity values

ACTIVITY 9 – Denoising an image corrupted by S&P or Gaussian noise
1. In the MATLAB command prompt type Denoising.
2. You will be prompted to enter the kind of noise you want to remove from the image. If you want to restore an image with snowy noise enter 1. If you want to restore an image with grainy noise enter 2.

3. Next you will be prompted to enter the size of the block that you want to use. As in activity 7 the mean or median of the pixels in the block will be calculated. The intensity of the pixel in the center of the block will be replaced with this value. Enter an odd number. Start with smaller values for block size to speed computation.
4. Complete activity for both types of noise.
Video Processing - Denoising
With relative ease we can extend our newfound knowledge of denoising an image to denoising a video. The process is very similar since we are going to employ the same mean and median algorithms previously used.
Think of a video as a series of still images. In common cinema format 24 frames per second are used for video. That is 24 still images are projected onto the screen every second. The combination of these images at this rate gives us the sensation of motion and what we perceive is video.
We are now going to work with a signal processing blockset similar to that shown in figure 1 to demonstrate denoising a video. Figure 10 below shows our blockset. We have a streaming video receiver (television) where we're going to watch a clip from a soccer game. Pretend we have a satellite dish and its raining outside. Due to the rain our video signal has become corrupted with noise. We wish to clean the image up as best as we can so that we can still watch our soccer game.

[image: image11.png]MATLAB 7.40
File Edit View Debug Desktop Window Help

D& | 2@o « W B2

CuentDbectory: [AU S Documents WISTLADNP Lo Code\Smlink SessonDemo 01 Video Scee

Shorteuts (2] Howto Add (2] What's New

Bt B -

Workspace Current Directory.

w0 2 x [command Window

© To get strted, slect MATLAB Helpor s from the Help mer

Al Files £

Type

S Embeddedd_sf.c
1] Embeddedd_sth

W Sim_02 Soccer_Fiter -

CSoul]| (1371 x inverpreter.dli:inc

|4) Embeddedd_sf.mexw32
8] fitters. mdl

File Edit View Simulation Format Tools Help

%) Sim_01_Soccer_Noisy.mdl
| 4] Sim_01_Soccer_Noisy_sfun. mexw32

DEES| L mR|et 2| r s [ema

e RBE®

= Sim_02_Soccer_Filter.mdl

|4 Sim_02_Soccer_Filter_sfun. mexw32
8 soccergoal avi

2 Thumbs. db

Median Filtering versus Adaptive Medi

n Filtering

60988, 0]

[FredStepDiscrte

Varning: vipsnks.mdl, line 24: block diagram does not have a parameter named

> In genmeral\private\opemmdl at 13
In open ac 136
In wiopen at 196
Warning: vipsnks.mdl, line 33: block diagram does
> In genmeral\private\opemmdl at 13
In open ac 136
In wiopen at 196
Warning: vipsnks.mdl, line 57: block diagram does
> In genmeral\private\opemmdl at 13
In open ac 136
In wiopen at 196

not have a parameter named

not have a parameter named

" Samp leTineAnnotations' .

| Covhiode1RefEnable .

' ShouSignalResolutionIcons' .

Ti26) w_anterpreter ALl mt emerl provecten AnIHTary (e SHhERECHECE, T, v, e opanes, svruee LaPeodNEar_tag ¢, e o1 (-
CHoc1 Amincerreades (s AnbebugChack, snt, int, e opcodte, struet inpeodelions. tag *ant ©) (2, O,

ruct _peodeheader *,imt ¥,struct mxk
ory_contextBEPEDU4EValTypel RHOAP AT
const *,int ¥, emm inDebugCheck) (Dxi
coelaldz, Dx78486h0, Dx014057cD) +
n (' C:\Users)Stevel Documents. .”,

+ 62 bytes

oxee

TP Lob 20 - Microso

T 1P Lsb Questions - WIATLAB 740 (R20.

Sim_02_Soccer_Fiter

1 Smulink_Shides pdf

'y)
Wi 229PM

Figure 10: Video Processing Blockset

ACTIVITY 10 – Denoising a video signal
1. Click on Sim_02_Soccer_Filter.mdl in MATLAB to run video processor.
2. On the block diagram click on the adapt block and set it to zero. Do the same for enable. This means that the denoising algorithm has been turned off.

3. What type of noise is corrupting the video?

4. While watching the video click on enable to set it to one. The image filter is now activated. What happens to the soccer game?

5. Experiment with different block sizes as we did in the previous activity.

a. Click the filtering block

b. Click filter

c. Click median filters

d. Click If Action Subsystem 1

e. Click Median filter

f. Change the value in the brackets under neighborhood size to [9 9]

6. What happens to the video using the new block size?

7. Experiment using another block size

The adapt button activates the adaptive filter algorithm. Instead of having to manually select the block size for the filter the algorithm will automatically select the optimum block size. Furthermore, the algorithm may use different block sizes on different sections of each image.
8. Enable the adaptive filter and watch the video. What happens?
References

http://www.rgbworld.com/color.html
http://dx.sheridan.com/advisor/cmyk_color.html
http://www.digicamhelp.com/taking-photos/basic-techniques/noise.php
http://en.wikipedia.org/wiki/Edge_detection
http://www.onegoodegg.com/LEARN/OVRV99_1/OV050MAC/INDEX.HTM
Red

Violet

Green

Blue

-1-

-10-

_1300362267.vsd
Image Processing Block

